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We propose quantum stirring with a laser beam as a probe of superfluidlike behavior for a strongly inter-
acting one-dimensional Bose gas confined to a ring. Within the Luttinger liquid theory framework, we calculate
the fraction of stirred particles per period as a function of the stirring velocity, the interaction strength, and the
coupling between the stirring beam and the bosons. We show that the stirred fraction is never zero due to the
presence of strong quantum fluctuations in one dimension, implying imperfect superfluid behavior under
transport. Some experimental issues on quantum stirring in ring-trapped condensates are discussed.
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Progress in the ability to manipulate low-dimensional ul-
tracold atomic gases has stimulated the interest in fundamen-
tal properties of one-dimensional �1D� Bose liquids.1–3 A
Bose-Einstein condensate �BEC� of an atomic gas is known
to exhibit superfluidity. Experiments have confirmed the su-
perfluid behavior by demonstrating a critical velocity below
which a laser beam could be moved through the gas without
causing excitations,4,5 and an irrotational flow through the
creation of vortices6 and vortex lattices7 in both rotating and
nonrotating traps. For a Bose-Einstein condensate in a toroi-
dal trap the observation of a persistent flow has also been
reported.8

Parametric pumping offers another way of inducing par-
ticle transfer without creating excitations. In pumping, peri-
odic �ac� perturbations of the system yield a dc current. In-
deed, this current may be entirely adiabatic as long as the
external perturbations are slow enough such that the system
always remains in the instantaneous ground state. The num-
ber of particles transferred in each cycle is then independent
of the pumping period T and the integral of the current over
a period is quantized for a clean infinite periodic system with
filled bands.9,10 Up to now, spectacular precision of quanti-
zation of the pumped current has been achieved in experi-
ments with nanoelectronics devices.11

Quantum pumping is intimately connected to quantum
stirring. Quantum stirring is accomplished by the cyclical
variation in one system parameter, while preserving the char-
acteristic of a pump, i.e., the orientation of the particle flow
is fixed. Quantum stirring has been exploited to elucidate the
nature of the critical velocity in superfluid liquids4,5,12 or the
character of the fluid flow.13

We focus here on stirring a 1D-interacting Bose gas with
a laser beam in the regime where interaction effects are es-
pecially strong, and we propose the fraction of stirred par-
ticles as a probe of superfluidlike behavior. Although for a
homogeneous 1D Bose gas the superfluid fraction, defined as
the response to twisted boundary conditions and estimated
from ground-state quantities �see, e.g., Ref. 18�, is always
independent of the interaction strength, it is a relevant ques-
tion to ask whether the out of equilibrium behavior of a 1D
Bose gas as a probe is closer to the behavior expected for a
superfluid �e.g., frictionless flow below a certain velocity
threshold� or rather to a normal fluid �e.g., flow with drag�.

The study of the stirred fraction gives a measure of the de-
gree of superfluidity of the fluid, i.e., a small stirred fraction
corresponds to superfluidlike behavior and a unity-stirred
fraction corresponds to normal-like behavior. Its measure is
complementary to the onset of a drag force as a manifesta-
tion of superfluidlike behavior.14,15

We consider N bosons of mass m confined onto a
1D ring of circumference L, with contact interactions
v�x−x��=g��x−x�� at zero temperature. The long-
wavelength behavior of this system at distances larger than
the cut-off length �=1 /�0=L /N is described by the Lut-
tinger liquid Hamiltonian in terms of the density and phase
fluctuation modes of the bosonic field16–18

H0 =
�

2�
� dx�vs

K
����x��2 + vsK����x��2� , �1�

where the field ��x� is related to the particle density accord-
ing to

��x� = ��0 −
1

�
� ��x�	 


p=−	

	

ei2p���0x−��x��, �2�

the field ��x� corresponds to the phase of the superfluid, and
we have ���x� ,���x���= i��x−x��. In the case of repulsive
contact interaction between bosons, the Luttinger parameters
vs and K used in Eq. �1� are obtained �Ref. 18� by

vsK=
���0

m , as follows from Galilean invariance, and
vs

K = g
�� in

the weak-coupling limit, while
vs

K =
��0

�m �1−
8�0�2

mg � in the
strong-coupling limit. When the interaction goes to zero, K
goes to infinity, while K=1 for infinitely strong hardcore
interactions �Tonks-Girardeau �TG� limit�, where the prob-
lem can be solved by mapping onto a gas of noninteracting
fermions.19 In this regime 2��0→2kF, with kF being the
Fermi wave vector of the corresponding mapped spinless
fermions. The long-wavelength properties of 1D dipolar
gases are also described by Eq. �1� with K
1.20

We describe next the effect of a barrier moving with ve-
locity V through the fluid by introducing the time-dependent
potential U�x , t�=U0��x−Vt�. In an experiment this could be
realized, e.g., by stirring the gas by a blue-detuned laser
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beam. The Hamiltonian acquires an explicitly time-
dependent term which couples to the density:

�H�t� =� dxU�x,t���x� . �3�

Using Eq. �2� for the density and keeping only the lowest
most relevant harmonics we may rewrite Eq. �3� as

�H�t� = U0��0 −
1

�
� ��Vt� + 2�0 cos�2��0Vt − 2��Vt��� .

�4�

The term proportional to �� is analogous to a slowly vary-
ing chemical potential and can be absorbed in H by a redefi-
nition of the field � and �→�− �K /vs��xdx�U�x��, while the
last leading term in Eq. �4� represents scattering of the
bosons off the barrier with momentum close to �2��0. In
the TG �Ref. 19� limit it describes the backscattering of right
movers into left movers, i.e., processes with momentum
close to �2kF. During its motion the barrier drags along a
part of the bosons. We are interested in the stirred fraction
Nstir /N i.e., the fraction of particles transported per period
T=L /V by the moving barrier, and related to the particle
current as Nstir=

1
2��0

TdtI�t�. If the barrier height is infinitely
large, the fraction of stirred particles per period is quantized,
i.e., Nstir /N=1, independently of the interaction strength. If
the barrier height is finite, the stirred fraction is in general
smaller than one and we show that it is related to the degree
of correlations in the system. We analyze perturbatively the
regimes of weak and large barriers for arbitrary interaction
strength and treat exactly the Tonks-Girardeau regime.

Weak barrier. In the weak-barrier limit we perform a
perturbative analysis of the current generated by the
stirring Hamiltonian �H. As customary in Luttinger liquid
formalism we introduce the particle density of right �left�
movers related to the fields ��x� and ��x� as �R�L�

�
�0

2 � ����x�����x��. The particle current at low energy is
J�x����x�; since it involves the difference in the number
of right and left movers, the term proportional to �� in Eq.
�4�, which does not distinguish between left and right mov-
ers, plays no role in generating the particle current. On the
contrary, the third backscattering term in Eq. �4� can lead to
the generation of a current which we define of backscatter-
ing, Ib. In fact, addition of the moving-barrier potential
breaks the continuous chiral symmetry21 violating
the conservation of the axial charge NR−NL, where
NR�L�=�dx�R�L��x�. In the lowest-order perturbation
theory the backscattering current is given by Ib

0= i
� �NL ,�H�

=− i
� �NR ,�H�. In our specific case, by using the bosonized

expression of the density operators and the stirring Hamil-
tonian, the resulting backscattering current operator is Ib

0

= i�t�ñ�t�−H.c., where �t�=U0ei2��0Vt and ñ�0ei2��Vt�,
and it is characterized by the backscattering frequency �b
=2��0V. Linear-response theory yields the backscattering
current to second order in the barrier strength U0 as

Ib � i�
−	

t

dt���Ib
0�t�,�H�t����H0

, �5�

and turns out to be related to the Fourier transform of the
Green’s function of the backscattering operator ei2��Vt� at the
characteristic frequency �b. In the thermodynamic limit
N ,L→	 with �0=N /L constant and for small stirring veloc-
ity, the resulting backscattering current is given by

Ib �
�2��2K−1

��2K�
U0

2

��vs�2� V

vs
�2K−2

2��0V , �6�

with � being the Euler gamma function. The fraction of
stirred particles is readily obtained from the backscattering
current according to Nstir /N= Ib /�b. In the Tonks-Girardeau
limit K→1, Eq. �6� yields Nstir /N� �U0 /�vs�2, i.e., the result
is independent of the frequency �b and hence adiabatic.9,22 In
the small �b limit this result is in agreement with the exact
calculation of the fraction of stirred particles as shown be-
low. Note that as the Luttinger liquid theory is an effective
low-energy model, it describes correctly the system at fre-
quencies �b
2�vs /�, hence expression �6� is valid only if
V
vs, and cannot treat the supersonic regime. By recalling
that the power-law dependence in Eq. �6� originates from the
excitation of sound waves in the quasi-one-dimensional ge-
ometry, we can also determine the smallest velocity for
which Eq. �6� holds in the case of a ring of finite length. In
this case no excitations are possible below the lowest veloc-
ity Vlow=vs /N�� /mL corresponding to the momentum of
the lowest bosonic mode on the ring. The value of Vlow found
agrees with the one obtained by using a Gross-Pitaevskii
approach for K�1.23 Thus as a main result we find that at
the critical velocity Vlow the fraction of stirred particles
crosses from a power law to a constant �adiabatic regime�. In
this regime the fluid flow is steady.13 Note also that the adia-
batically stirred fraction decreases with decreasing interac-
tion strength as 1 /��2K�: when K grows, the dynamical re-
sponse of the system becomes more superfluidlike, hence the
interaction with the external barrier decreases and
Nstir /N→0.

We would also like to stress that in the interacting regime,
no direct relationship between the superfluid fraction and the
stirred fraction of particles can be found. In fact, the bulk
superfluid fraction is defined in terms of vs and K as
mvsK /�, while the stirred fraction of particles depends sepa-
rately on K and vs. Thus the latter does not serve as a direct
measure of the superfluid fraction, but only as a probe of
superfluidlike behavior under transport.

The results obtained above are consistent with a treatment
based on the perturbative renormalization-group �RG�
approach.24 In this approach the scaling of the potential U0
with frequency � is obtained from the flow equation
dU0 /dz= �K−1�U0, where dz=d� /�. As a function of K,
two regimes are distinguished. When K�1 the barrier is
irrelevant: U0 decreases as � is decreased from vs /� down to
�bV /�. For an infinite system, U0 and hence Nstir /N scale
to zero as �b→0; for a finite system the RG procedure
should be stopped when �bvs /L, i.e., for Vvs /N; this is
the regime where we find a residual adiabatically stirred frac-
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tion independent of V. For K
1, e.g., in the dipolar gas, U0
and hence Nstir /N grow under RG, i.e., the barrier is a rel-
evant perturbation. This is shown in the right panel of Fig. 1.
Perturbation theory breaks down when Nstir /N1, i.e., at the
velocity VU0

� =vs�U0 /�vs�1/1−K and the RG flow must be
stopped. The behavior beyond this breakdown point is de-
scribed by an effective weak-link tunneling model.24

Weak-link limit. The large-barrier limit is equivalent to a
ring cut at the position of the delta barrier, and we treat the
residual tunneling t0 between the two ends of the ring as a
perturbation.24 In this case the bosonized Hamiltonian corre-
sponding to the hopping across the weak link can be ob-
tained by a duality transformation,24 �→� and is given by
�H t0 cos�2���Vt��. Its contribution to the particle current
�tunneling current It� can be calculated in the linear-response
regime and its explicit expression for an infinitely long ring
is

It =
�2��2/K−1t0

2

��0�vs�2��2/K�
� V

vs
�2/K−2

2��0V . �7�

In the presence of tunneling the stirred fraction of particles is
Nstir /N=1− It /�b, where It /�b is the fraction of tunneled par-
ticles, not stirred. In the hardcore limit �K=1� the stirred
current will be again linear in the frequency of the stirring.
We thus recover the adiabatic limit. Under the RG flow, the
tunneling becomes relevant for interacting bosons with con-
tact repulsion �K�1� therefore, upon decreasing the stirring
velocity the effective tunneling strength increases, thereby
decreasing the stirred particle fraction, again shown in the
right panel of Fig. 1. Perturbation theory breaks down when
the effective tunneling strength reaches unity and the RG
flow must be stopped at Vt0

� =vs�t0 /�0�vs�K/K−1, then the

stirred fraction of particles is governed by the previous
weak-barrier limit. The results for the dependence of the
stirred fraction of particles on the velocity V are shown in
Fig. 1. The results explicitly show a difference in the regime
with K�1 �short-range interactions� and K
1 �dipolar in-
teractions�. In the latter case the stirred fraction decreases at
increasing velocities, where the system shows a superfluid-
like behavior. Since a dipolar gas is characterized by a
quasicrystal-order phase at increasing density,20 the result
can be interpreted as an inefficiency of the stirring in creating
an excitation in the ordered state.

Nonperturbative analysis. In the Tonks-Girardeau limit
�K=1� a time-dependent Fermi-Bose �FB� mapping19 is
employed to generate exact solutions of the problem25 and
the current is calculated exactly. The time-dependent version
of the FB mapping permits to write the exact many-body
wave function of N impenetrable bosons on a ring as
�B�x1 , . . . ,xN ; t�=A�x1 , . . . ,xN��F�x1 , . . . ,xN ; t�, where A is
a unit antisymmetric function A�x1 , . . . ,xN�
=�1�j
k�Nsgn�xk−xj�, �F�x1 , . . . ,xN ; t�=C deti,j=1

N �i�xj , t�
is the wave function for any ideal Fermi gas, and
�i�xj , t� are the solutions of the one-body time-dependent
Schroedinger equation in the external potential U�x , t�.
Starting from the above many-body wave function, we
evaluate the Tonks-Girardeau particle current density in
terms of the one-body density matrix �1�x ,y�
=�dx2¯dxN�B

��x , . . . ,xN ; t��B�y , . . . ,xN ; t� as J�x�
=−�� /2mi���r�1�x+r /2,x−r /2��r=0. Although �1�x ,y� for a
TG gas is very different from the one of a Fermi gas due to
the presence of the mapping function A, we find that the
latter has no effect on the current, which then coincides with
the current of an ideal Fermi gas. In the adiabatic limit
V��� /mL the particle current and the stirred fraction pro-
duced by the slow variation in the stirring potential can then
be evaluated by following the adiabatic expansion of Thou-
less for an ideal Fermi gas,9 i.e.,

Ns =
i

2�

�2

mL
�

0

�

dt 

�,j�0

f��1 − f j�
��� − � j�

��� j��̇����x���� j� + H.c.� ,

�8�

where f�,j is the fermionic probability occupation function of
the state � , j. In the case of a blue-detuned laser field
piercing the ring at a position x=0 and modeled by the
potential U0��x�, the appropriate orbitals �i�xj , t� are the
L-periodic free-particle energy eigenstates satisfying
at x=0 the cusp condition. The complete orthonormal set of
even-parity �n

�+� and odd-parity �n
�−� eigenstates are

�n
�+��x�= �eiknx+e−ikn�x−L�� /Nn and �n

�−��x�=� 2
Lsin�2n�x /L�,

where kn are obtained from the transcendental
equation kn tan�knL /2�=mU0 /�2 �for U0→	 we have
kn=��2n+1� /L, in agreement with Ref. 19� and Nn

=�2L�1+sin�knL� / �knL��, with n running from one to 	. The
N-fermion ground state is obtained by inserting the lowest-N
orbitals into the determinant above �Fermi sea�, and using
the exact orbitals �n

��� as instantaneous ground state we
obtain from Eq. �8�

U0
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Nstir/N

t0

U0

0.2
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t00.6
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1 K

N
Nstir

sv
V 1

FIG. 1. �Color online� Left panel: fraction of stirred particles as
a function of the stirring velocity �in units of vs�, obtained by
matching Eqs. �6� and �7� at VU0

� =Vt0
� =V� through the RG consid-

erations �see text�. �Black� Continuous line: Nstir /N at decreasing
barrier strengths U0 / ��vs� from one �upper curve� to 0.2 �lower
curve� for K=2; �red� dashed line: Nstir /N at increasing tunneling
strength t0 / ��0�vs� from 0.2 �upper curve� to 0.6 �lower curve� for
K
1, fixed at 0.5. The vertical dashed-dotted lines indicate V� /vs.
The vertical straight line indicates the critical velocity Vlow below
which the stirring is adiabatic. Right panel: summary of the RG
flow for the barrier potential U0 and tunneling strength t0 �left and
right edge arrows� and Nstir /N �arrows in the middle of the frame� at
varying the interaction K approaching the adiabatic regime. The
stirred fraction is analogous for neutral particles to the conductance
for a 1D electron gas with a barrier �Ref. 24�.
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Ns = 64

�,j

�f� − f j�
sin2�kjL/2�

1 + sin�kjL�/kjL

�kjL�24�2�2

��kjL�2 − 4�2�2�3 .

�9�

For a weak barrier by using the small-U0 expression for kn
we obtain Ns /N�0.32�U0 /�vs�2, which scales as the K=1
limit of the backscattered current in Eq. �6� because
vs=�kF /m for K=1.22 For an infinitely strong barrier using
the U0→	 limit of kn it is straightforward to verify that the

particle transport is quantized,9 i.e., all the particles are
dragged by the barrier and Nstir /N=1. This is shown in Fig.
2, where the stirred faction of particles is plotted as a func-
tion of the barrier strength.

Experimental issues on condensates in closed loop wave-
guide. A possible way of achieving experimentally an annu-
lar condensate with strong transverse confinement is to use a
magnetic toroidal trap, as reported in Refs. 8, 26, and 27.
Experimentally the stirring of hydrodynamic flow in a BEC
by a blue-detuned laser beam, has been analyzed by calori-
metric method4 and phase contrast imaging5 and recently in
Ref. 13. The onset of a drag force has been shown by the
asymmetry in the density profile, defined as the difference
between the peak column density in front and behind the
laser beam, as a function of the stirring velocity above a
critical velocity. The space integral of the density asymmetry
is analogous to the fraction of stirred particles calculated
above. Recently, the persistent flow of Bose-condensed at-
oms in a toroidal trap has also been observed.8 A variant to
such experiment by the addition of a cyclic moving plug
beam could be a valuable realization of the present proposal.

In conclusion, superfluid flow in a ring geometry raises
interesting possibilities. With the use of a moving barrier
acting as a quantum stirrer, the analog of quantization of
particle transport for electron systems could be realized for
a gas of atoms as an alternative probe of superfluidlike be-
havior.

The authors would like to thank L. Glazman, M. Gi-
rardeau, E. Orignac, and E. Wright for useful suggestions.
This work was financially supported by the European com-
munity as a part of a Marie Curie Program and by the
MIDAS STREP project.

*citro@sa.infn.it
1 D. Hellweg et al., Appl. Phys. B 73, 781 �2001�.
2 A. Görlitz et al., Phys. Rev. Lett. 87, 130402 �2001�.
3 S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer,

and A. Aspect, Phys. Rev. Lett. 91, 010405 �2003�.
4 C. Raman, M. Kohl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz,

Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502
�1999�.

5 R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P.
Chikkatur, and W. Ketterle, Phys. Rev. Lett. 85, 2228 �2000�.

6 K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.
Rev. Lett. 84, 806 �2000�.

7 J. Abo-Shaeer, Science 292, 476 �2001�.
8 C. Ryu, M. F. Andersen, P. Clade, V. Natarajan, K. Helmerson,

and W. D. Phillips, Phys. Rev. Lett. 99, 260401 �2007�.
9 D. J. Thouless, Phys. Rev. B 27, 6083 �1983�.

10 B. Altshuler and L. Glazman, Science 283, 1864 �1999�.
11 J. Shilton et al., J. Phys.: Condens. Matter 8, L337 �1996�;

M. W. Keller, J. M. Martinis, N. M. Zimmerman, and A. H.
Steinbach, Appl. Phys. Lett. 69, 1804 �1996�; J. J. Vartiainen,
M. Möttönen, J. P. Pekola, and A. Kemppinen, Appl. Phys. Lett.
90, 082102 �2007�.

12 J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 �1967�.
13 P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 �2007�.

14 N. Pavloff, Phys. Rev. A 66, 013610 �2002�.
15 G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A 70,

013608 �2004�.
16 F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 �1981�.
17 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-

versity Press, Oxford, 2004�.
18 M. Cazalilla, J. Phys. B 37, S1 �2004�.
19 M. Girardeau, J. Math. Phys. 1, 516 �1960�.
20 R. Citro, E. Orignac, S. De Palo, and M. L. Chiofalo, Phys. Rev.

A 75, 051602�R� �2007�.
21 P. Sharma and C. Chamon, Phys. Rev. B 68, 035321 �2003�.
22 The prefactor of Nstir /N obtained from Eq. �6� is nonuniversal, as

it depends on the short-distance cutoff �, here set equal to 1 /�0.
23 H. P. Buchler, V. B. Geshkenbein, and G. Blatter, Phys. Rev.

Lett. 87, 100403 �2001�.
24 C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220

�1992�; Phys. Rev. B 46, 15233 �1992�.
25 M. D. Girardeau and E. M. Wright, Phys. Rev. Lett. 84, 5691

�2000�.
26 S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M.

Stamper-Kurn, Phys. Rev. Lett. 95, 143201 �2005�.
27 A. S. Arnold, C. S. Garvie, and E. Riis, Phys. Rev. A 73,

041606�R� �2006�.

0 5 10 15
U0 /hbar vF

0

0,2

0,4

0,6

0,8

1

N
si

tr
/N

N
/N

st
ir

U /h v0 F

FIG. 2. Fraction of stirred particles for a Tonks-Girardeau gas
�i.e., case K=1� as a function of the barrier strength U0 / ��vs�, in the
adiabatic limit from Thouless expression Eq. �9� �solid line� and
analytical small-U0 behavior �dot-dashed line� as explained in the
text.
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